Microbial electrolysis cells for high yield hydrogen gas production from organic matter.

نویسندگان

  • Bruce E Logan
  • Douglas Call
  • Shaoan Cheng
  • Hubertus V M Hamelers
  • Tom H J A Sleutels
  • Adriaan W Jeremiasse
  • René A Rozendal
چکیده

The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (> 0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few years ago, rapid developments have led to hydrogen yields approaching 100%, energy yields based on electrical energy input many times greater than that possible by water electrolysis, and increased gas production rates. MECs used to make hydrogen gas are similar in design to microbial fuel cells (MFCs) that produce electricity, but there are important differences in architecture and analytical methods used to evaluate performance. We review here the materials, architectures, performance, and energy efficiencies of these MEC systems that show promise as a method for renewable and sustainable energy production, and wastewater treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells.

Microorganisms can produce hydrogen gas (H(2)) at high rates by fermentation of carbohydrates, but not from proteins. However, it is possible to produce H(2) at high rates and yields from proteins by electrohydrogenesis in microbial electrolysis cells (MECs). Hydrogen gas was generated using bovine serum albumin (BSA, 700 mg/L) in a single-chamber MEC at a rate of Q=0.42+/-0.07 m(3)/m(3)/day an...

متن کامل

Hydrogen generation in microbial reverse-electrodialysis electrolysis cells using a heat-regenerated salt solution.

Hydrogen gas can be electrochemically produced in microbial reverse-electrodialysis electrolysis cells (MRECs) using current derived from organic matter and salinity-gradient energy such as river water and seawater solutions. Here, it is shown that ammonium bicarbonate salts, which can be regenerated using low-temperature waste heat, can also produce sufficient voltage for hydrogen gas generati...

متن کامل

Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells.

Fermentative hydrogen production from waste activated sludge (WAS) has low H2 yield because WAS contains limited amounts of carbohydrate suitable for use by hydrogen-producing bacteria. Here, augmentation of hydrogen production from WAS by microbial electrolysis cells (MECs) was implemented. H2 yields of 3.89±0.39 mg-H2/g-DS (5.67±0.61 mg-H2/g-VSS) from raw WAS and 6.78±0.94 mg-H2/g-DS (15.08±1...

متن کامل

A microbial fluidized electrode electrolysis cell (MFEEC) for enhanced hydrogen production

A microbial fluidized electrode electrolysis cell (MFEEC) was used to enhance hydrogen gas production from dissolved organic matter. Flowable granular activated carbon (GAC) particles were used to provide additional surface area for growth of exoelectrogenic bacteria. The use of this exoelectrogenic biofilm on the GAC particles with fluidization produced higher current densities and hydrogen ga...

متن کامل

The significance of key operational variables to the enhancement of hydrogen production in a single-chamber microbial electrolysis cell (MEC)

Microbial electrolysis cell (MEC) is one of the promising and cutting-edge technologies for generating hydrogen from wastewater through biodegradation of organic waste by exoelectrogenic microbes. In the MECs, the operational parameters, such as applied voltage (Eap), anode surface area, anode-cathode distance, and N2/CO2 volume ratio have a significant impact on the hydrogen yield and producti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 42 23  شماره 

صفحات  -

تاریخ انتشار 2008